- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Atay, Mustafa (2)
-
Poudyel, Megh (2)
-
Evora, Saul (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Automated and contactless face recognition is a widely used machine learning technology for identifying people which has been applied in scenarios like secure login to electronic devices, automated border control, community surveillance, tracking school attendance. The use of face masks has become essential due to the global spread of COVID-19, raising concerns about the performance of recognition systems. Conventional face recognition technologies were primarily designed to work with unmasked faces, and the widespread use of masked face images significantly degrades their performance. To address this understudied issue, we evaluated the performance of six deep learning models, namely, VGG-16, AlexNet, GoogleNet, LeNet, ResNet-50, and FaceNet on masked and unmasked face images. We aim to find out if deep learning models struggle with masked face recognition and identify the models that mitigate the impact of masked face images. We track, and report miss rates for both masked and unmasked images, along with performance metrics like accuracy and F1 scores in this paper.more » « less
-
Atay, Mustafa; Poudyel, Megh; Evora, Saul (, IEEE)We explore gender bias in the presence of facial masks in automated face recognition systems using various deep learning algorithms in this research study. The paper focuses on an experimental study using an imbalanced image database with a smaller percentage of female subjects compared to a larger percentage of male subjects and examines the impact of masked images in evaluating gender bias. The conducted experiments aim to understand how different algorithms perform in mitigating gender bias in the presence of face masks and highlight the significance of gender distribution within datasets in identifying and mitigating bias. We present the methodology used to conduct the experiments and elaborate the results obtained from male only, female only, and mixed-gender datasets. Overall, this research sheds light on the complexities of gender bias in masked versus unmasked face recognition technology and its implications for real-world applications.more » « less
An official website of the United States government
